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Abstract: 

One of the deadliest cyber-attacks against smart grids is known 

as false data injection (FDI), which may result in energy theft 

from end users, false dispatch in the distribution process, and 

device malfunction during power production. In this work, we 

develop a new kind of FDI attack called tolerant false data 

injection (TFDI). These assaults circumvent the conventional 

method of detecting incorrect data by taking use of the 

detector's latitude for dealing with observational mistakes. 

After that, we present an EDSE-based approach to TFDI 

detection in smart grids. Using graph partition methods, the 

smart grid is broken down into its constituent parts. The 

extended subsystem is the result of each subsystem being 

expanded to include the neighbouring buses and tie lines. 

Each expanded subsystem's bogus data is checked using the 

Chi-squares test. Decomposition makes the bogus data easily 

distinguishable from common observational mistakes, hence 

improving the sensitivity of the detection process. IEEE 14-

bus, IEEE 39-bus, IEEE 118-bus, and IEEE 300-bus systems 

are subjected to extensive TFDI attack simulations. The 

suggested technique greatly decreases the related computing 

costs, while simulation results demonstrate that the detection 

accuracy of the EDSE-based method is much greater than that 

of the previous method. Keywords: smart grids; security; false 

data injection (FDI); bad data detection; extended distributed 

state estimation (EDSE)   

Introduction  

In smart grids, information techniques are applied 

to provide a desirable infrastructure for real-time 

Quantification, Dissemination, Determination, and 

Management. Millions of buildings and streets are 

outfitted with sensors for this reason. Due to its 

interconnection with the data infrastructure, the 

question of how to prevent false data injection 

(FDI) attacks — those that manipulate data in 

transmissions or acquire unauthorized access and 

control over electrical systems — arises. In 

addition, hackers are drawn to FDI assaults because 

of the potential financial rewards they provide 

(hackers, for instance, may alter their energy 

expenditures by tampering with the readings on 

their smart meters). The control center might be led 

astray by the phony information and endanger the 

smart grid in the process. Since the ground-

breaking work of Schweppe in 1970 [2], it has been 

widely accepted that power system state estimate 

(SE) is a suitable way to analyse the poor data. 

Processing the set of redundant measurements, 

often bus voltage magnitudes and phase angles, in 

real-time is used in supervisory control and data 

acquisition (SCADA) systems to decrease  

 

 

observation errors, identify incorrect data, and 

predict the electrical states of power systems. It is 

hypothesized that faulty data detection techniques 

[3] may safeguard smart grids against FDI assaults, 

such as the energy conservation test, the Chi-

squares test, and the normalized residuals test.  

 

Preliminaries  

 SE 

 Power system SE is widely used to ensure the 

safety and economy of operation of power system. 

The state variables are related to the measurements 

as shown in Equation (1): 

 

where x is the state variables; z is the meter 

measurements; 

 

 

is the measurement error. For a well-proofreading 

system, these errors can be considered to follow the 

Gaussian distribution of zero mean [3]. In the SE, 

measurements are usually the values that can be 

observed easily, such as the line power flow, bus 

power injections, bus voltage magnitudes, and line 

current flow magnitudes, etc. The state variables 

are usually complex phasor voltages which cannot 

be measured conveniently. Both the measurements 

and state variables follow the same constraints, 

such as power balance theory and the Kirchhoff’s 

Law, etc. When using the polar coordinates for a 

system containing N buses, the state vector will 

contain (2N − 1) elements, N bus voltage 
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magnitudes and (N − 1) phase angles. In general, 

measurements are more than state variables (m > 

n), since there are more lines than buses and more 

kinds of measurements than state variables. 

Essentially, power system SE is a process which 

uses real-time redundant measurements to improve 

data accuracy and automatically excluded from the 

error message caused by random interference. The 

objective is to find an estimate x ^ of x that is the 

best fit of the measurement z according to Equation 

(1). The problem is usually solved by the weighted 

least squares (WLS) algorithm [3]. The SE can be 

formulated as a quadratic optimization problem: 

 

where R−1 is the measurement inverse covariance 

matrix. The Newton’s method can be applied to 

solve the quadratic optimization problem. The 

increment can be calculated by: 

 

 

is the Jacobi matrix; and 

 

is the gain matrix. The convergence criterion is the 

following: 

 

where εx is a predefined threshold. 

TFDI  

Most researches on the FDI construction follow the 

same idea: the attackers find an attack vector, a, to 

be equal to Hc. Then the manipulated measurement 

za = z + a can pass the bad data detection and 

identification of direct-current (DC) SE [8,9]. Thus, 

the measurement residual is: 

 

From the perspective of the attacker, it is almost an 

unattainable mission to find an attack vector a in 

the real world. Firstly, the topology of the power 

system is one of the top secrets of most power 

companies. It is difficult to obtain the measurement 

matrix H. Secondly, solving the a = Hc, which in 

real systems is an ultra-high dimensional equation 

is difficult. It would be a NP-hard problem, when 

the attackers want to inject a specific data with 

limited compromised meters. Moreover, if the 

system topology is changed, the FDI attack would 

trigger bad data detection. Subject to the constraints 

of invisible observation errors and the false alert 

rate, the tolerance mechanism for measurement 

errors in SE is necessary. Instead of solving the 

problem in Equation (6), the attacker can construct 

a TFDI below the threshold of estimated residuals: 

 

Moreover, there is a high probability that the false 

data could not be detected when the attackers 

manipulate the data on both sides of the same 

transmission line. There are four power flow 

measurements per line. In each direction, there is a 

pair of active powers and reactive powers. Since 

the active power is related to economic interests, it 

is more attractive for attackers to falsify. On the 

transmission line Li,j (between the bus i and j), Pi,j 

denotes the active power from busi to busj, 

observed on busi, and Pj,i denotes the active power 

from busi to busj, observed on busj. The original 

active power from bus i to j , org Pi j and , org Pj i 

are changed by same times to be , inj Pi j and , inj 

Pj i simultaneously to guarantee the balance of line 

power flow. Injected data levels (IDL) is defended 

to present the relative injected errors against the 

measurements: 

 

Comparing with the strict conditions required by 

the undetectable FDI attack, the TFDI only needs 

the attacker to manipulate meters on target 

transmission lines. Moreover, from [8], it can be 

seen that the probability of finding an attack vector 

for a target FDI (unconstrained case) in an IEEE 

300-bus system is about 20%, even if the attacker 

can compromise 60% of all smart meters. In 

experiments, traversal attacks are conducted in 

IEEE 57- and 300-bus systems. The probabilities to 

construct a TFDI are shown in Table 1. It can be 
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seen that the possibility to construct a TFDI attack 

is much higher than for an undetectable FDI.  

Table 1. Success probability to find a tolerable 

false data injection (TFDI) attack. IDL: injected 

data levels; and IEEE: the Institute of Electrical and 

Electronics Engineers. 

 

In addition, we modify the active power on each 

bus in IEEE 39-, 57- and 118-bus systems with 

different IDL. A relative low detection precision is 

performed by the Chi-squares test, as shown in 

Table 2. Furthermore, with the scale of the power 

system grows, the tolerance of measurement errors 

is accordingly increased. We can see from Table 2 

that it is easier for the attackers to bypass the 

detection in the larger system. 

Table 2. Detection precision of the Chi-squares test 

against TFDI attacks. 

 

It's important to remember that attackers build the 

TFDI based on the information and access they 

have to smart meters. The system's observability is 

of little concern to them. TFDI assaults conceal 

themselves amid regular measurement mistakes 

and take advantage of the detector's tolerance of 

typical cumulative random noises. It just causes 

certain smart meter readings to be inaccurate and 

does not change the system's observability overall. 

Since the TFDI method is simple to implement and 

works with both AC and DC models, it is important 

for power engineers and security experts to be 

aware of the threat posed by this kind of attack. In 

this article, we'll go through several ways to defend 

yourself against this kind of assault. 

 Possible Dangers and Attack Scenarios 

 Invasion of Smart Meters  

The FDI is based on cyber methods. To get access 

to invalid activities on smart meters or network 

communications is the primary goal of 

cyberattacks. Modbus/TCP and DNP 3.0/TCP are 

the most used protocols for communicating with 

smart meters. Modbus/TCP uses port 502, whereas 

DNP3.0/TCP uses port 20,000. An adversary may 

begin by scanning the whole network segment for 

hosts with open ports (either 502 or 20,000). After 

that, unique hosts are identified and labeled as 

potentially malicious. The attack may then interact 

with these gadgets to confirm that they are smart 

meters and to learn what kind of goods they are. 

Smart meters may be hacked in two ways: (1) 

Hacking into a gadget has traditionally included 

deciphering passwords. Smart meters often demand 

authentication when their settings need to be 

changed. Smart meters don't have complicated 

password procedures because of the limited 

computing resources and storage. In this simulated 

attack on smart meters, the password consists of 

four digits, and it can be cracked in a matter of 

seconds. (2) Plaintext communication is another 

weakness that may be used to get access to smart 

meters. Password protection systems for certain 

smart meters may be somewhat involved. However, 

Modbus/TCP or DNP 3.0/TCP is often used as the 

communication protocol for smart meters since it 

allows for unencrypted data transmission. Critical 

activities on smart meters, such as changes to 

system time, IP addresses, and firmware upgrades, 

need authentication, and an attacker may discover 

these events by monitoring the data flow. Attackers 

may get access to smart meters if they are able to 

locate the package containing authentication 

information and capture the password. If an 

attacker gains access to a system, they may alter the 

values of any measurements they take. Most smart 

meters just allow you to read off numbers like 

active power and reactive power. Some parameters, 

however, are editable, including time and CT ratio. 

Alternating electric currents may be measured with 

the use of a CT. Where I1 and I2 are the main and 

secondary currents, respectively, the CT ratio K is 

denoted as K = I1/I2. Changes in K have an 

equivalent effect on the active and reactive power 

levels. Altering the CT ratio allows the attacker to 

skew power consumption readings. 

Identifying Erroneous Data Using 

EDSE  

Section 2.2 demonstrates that the Chi-squares test 

has a threshold that allows for random and 

unavoidable fluctuations in the data. Attackers may 

develop sophisticated TFDI assaults by masking 

their signals with background sounds in 

measurements. The accumulated normal 

observation errors from each measurement become 
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more problematic for the Chi-square test as the 

number of measurements increases. False data 

won't be able to hide amongst the noise of regular 

measurements if the big system can be properly 

dissected. To deal with TFDI attacks, an EDSE-

based faulty data detection approach is presented.  

Separation of the Power Grid  

The weighted-undirected graph model of power 

systems may be built for a smart grid with n buses 

and m transmission lines by writing G = V, E, 

where V is a collection of vertices representing 

load buses or generators and E is a set of edges 

representing the transmission lines in smart grids. 

Graph adjacency matrix is represented by A = ai,j, 

where i,j = 1, 2,..., n. When buses i and j are 

physically linked, their physical attributes are 

reflected in the ai,j element, which is non-zero in 

this case.  

The branch's importance in the modeled 

graph may be calculated in the 

following ways: 

transmission line impedance; line power flow at 

each sample period; the fundamental architecture of 

the power system (ai,j = 1 if bus i and bus j are 

linked). Transmission line impedance (Z = R + jX), 

which represents the electrical distance between 

buses, is used as edge weight in this research. The 

transmission line's reactance, X, is equal to R, its 

resistance. When compared to X, R's value is 

negligible. Therefore, the edge weight is decided 

upon as the absolute value of the line reactance |X|. 

Using clustering techniques like the L-bounded 

Graph Partition Method (LGPM) [25], the K-

Medoid [26], Chameleon [27], etc., the massive 

graph is partitioned into multiple smaller 

subgraphs. In this study, we use the LGPM 

approach, which is stable and independent of the 

initial clustering centers, to decompose graphs. 

Table 3 shows the essential steps in LGPM's 

method. 

 Analysis and Experiment 

 Section 6.1 simulates three assault scenarios on the 

IEEE 14-bus system to examine the efficacy of the 

EDSE-based approach. Section 6.2 uses the IEEE-

39 bus system to present a statistical comparison of 

detection performances between the traditional and 

EDSE-based methods; Section 6.3 discusses some 

TFDI attacks that are not detected by the EDSE-

based method; Section 6.4 demonstrates the 

evaluation of time complexity; and Section 6.5 

addresses the appropriate number of subsystems. 

Cases of Attack on IEEE 14-Bus Systems, Version 

6.1 In Figure 3, we see three different attack 

scenarios built on the IEEE 14-bus architecture. 

The LGPM is responsible for breaking down the 

IEEE 14-bus architecture. 

 

Figure 1. Attack cases on IEEE 14-bus system. 

As shown in Table 4, the IEEE 14-bus system is 

divided into two subsystems, ―subsys_1‖ and 

―subsys_-2 ―  

 

are tie lines. In subsys_1, there are 8 buses 

including adjacent buses: bus6,bus7 and bus9. The 

number of state variables n1 is 15 and the number 

of measurements m1 is 40. The degree of freedom 

o1 in this subsystem is m1 − n1 = 25. According to 

the property of distribution, the threshold of bad 

data suspicion is 43.77. In subsys_2, there are 11 

buses, 21 state variables, and 52 measurements, and 

the threshold is 51.00. This indicates that the local 

threshold is much lower than the global one. 

Table 4. Decomposition of IEEE 14-bus system. 

 

To test the performance of EDSE-based bad data 

detection, three attack cases are constructed as 

shown in Table 5. In Table 5, Li,j denotes the 

transmission line where the false data are injected. 

Pi,j denotes the active power from busi to busj, 

observed on busi. The active power Pi,j and Pj,i are 

modified at the same time to guarantee the balance 

of line power flow. The original measurements are 

simulated by MATPOWER and then the Gaussian 

noise is added. It should be noted that there is a tiny 

difference between Pi j , and Pj i, . These two 

active power measurements are observed at each 

end of the transmission line. There is some power 

loss on the transmission line. For an attacker, it is 

not easy to change the active power to arbitrary 

values, because active power is usually read-only. 
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As explained in Section 4.1, attackers can change 

the active power through falsifying the CT ratio. In 

Attack Case 1–3, they increase the CT ratio by 2 

times, 3 times and 1.5 times, respectively. In Attack 

Case 1, false data is only injected into subsys_1. 

The P4,5 is modified from −61.16 MW to −122.32 

MW and P5,4 is modified from 61.67 MW to 

122.34 MW. In Attack Case 2, false data is only 

injected into subsys_2. The P6,13 is modified from 

17.75 MW to 53.24 MW, and P13,6 is modified 

from −17.54 MW to 52.61 MW. In Attack Case 3, 

the false data is injected into the tie line between 

subsys_1 and subsys_2. The P5,6 is modified from 

66.13 MW to 99.20 MW, and P6,5 is modified 

from −66.13 MW to 99.20 MW. 

 Table 5. TFDI attack cases on IEEE 14-bus 

system. 

 

As shown in Table 6, global values of J(x ^ ) are 

54.91, 66.04 and 54.73 in three attack cases, 

respectively. Obviously, they are lower than the 

threshold To,p(72.15). Thus, the injected false data 

cannot be detected. When we adopt EDSE-based 

method to deal with the Attack Case 1, we find 

that: in subsys_1, the J(x ^ ) is 51.98, which is 

higher than the local threshold 1 o p, T (43.77); in 

subsys_2, the J(x ^ ) is 25.22, which is below the 

local threshold 2 o p, T (51.00). It implies that there 

is false data in subsys_1. Similarly in Attack Case 

2, the EDSE-based method can detect the false data 

in subsys_2. In Attack 

Case 3, false data is detected in subsys_2. If the 

subsystem is not extended to include the adjacent 

buses, the FDI on tie-line L5,6 will not be found.  

Table 6. Detection results on IEEE 14-bus system. 

 

Conclusions  

In order to demonstrate how hackers might 

manipulate data in smart grids and avoid the 

conventional bad data detection techniques in 

power systems, this article presents many TFDI 

attack examples. These assaults conceal in regular 

observational flaws, which are within the margin of 

error for the Chi-square test. Potential losses from 

energy theft and cracking economic dispatch on the 

IEEE 14-bus system are calculated, and the 

implications of such assaults on smart grids are 

discussed. To address this issue, we offer an EDSE-

based approach for identifying TFDI assaults. By 

breaking down a large system into smaller, more 

manageable pieces, this technique increases the 

sensitivity of faulty data detection. Decomposing 

the power grid into manageable chunks using 

clustering techniques, expanding each subsystem to 

encompass neighboring buses, and performing SE 

and bad data detection inside each chunk are the 

three main processes that make up the EDSE-based 

approach. The IEEE 14, 39, 118, and 300-bus 

systems are simulated through comprehensive 

TFDI assault scenarios. The results demonstrate a 

dramatic increase in the detection accuracy of the 

EDSE-based technique. In addition, the EDSE 

provides a novel approach to online bad data 

identification due to its substantially decreased 

computing complexity and the possibility of further 

speeding up the detection process through parallel 

analysis of all extended subsystems. A better 

response to FDI in smart grids is the cyber-physical 

fusion method, since this kind of assault produces 

interactive responses in both the cyber network and 

the electricity grid. In the future, we want to go 

further into a detection approach that combines the 

EDSE with traffic flow anomaly detection. Even if 

the EDSE misses the bad data, the communication 

network's alarms will go off if criminals get 

unauthorized access to smart meters.  
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